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We present three-dimensional numerical simulations oésgmic isotropic turbulence in a periodic box subject tzisastic forcing. The finite-volume code Enzo
from UCSD is utilised with the piece-wise-parabolic methi@alella and Woodward, 1984] to solve the compressible iEedgiations. To begin with, a static grid of
7683 cells is used in combination with a Ornstein-Uhlenbecketgiving force [Schmidt et al., 2006] that comprises preitamtly compressive modes. The ideal
gas equation is applied with= 1.4 (adiabatic) in one simulation and= 1.01 (nearly isothermal) in a second simulation. Analysing &trtal properties of the flow
realizations, we intend to formulate appropriate critéoiathe dficient application of adaptive mesh refinement (AMR) in g#tyssical turbulence simulations.

Stochastic Forcing

e In the simulations, fluid is stirred by a random force fieldttha
smoothly varies in space and time.

e The discrete Fourier modes of the acceleratégi(t) are deter-
mined by a Langevin-type stochastidtdrential equation (SDE):

A A dt 20-2(K
() = ~aym(®F + Fo 25

1/2
) Pg(k“m) - dWh.

The second term generates Gaussian random devidifess(called
the Wiener process In one-dimensional form the above SDE de-
scribes theérnstein-Uhlenbeck process

e The spectrum of the force field is determined dafk). We apply
forcing on the largest length scales only. The correspandnarac-
teristic wavenumbeékgy = 2ra/ X, whereX is the size of the physical
domain. There are non-zero modesfigre [0, 2kg]. In the simu-
lations presented here,= 2 (I. e., the forcing wavelength is about
half of the domain size).

e The forcing Is either solenoidal (divergence-free) or tdil@nal
(rotation-free) or a weighted combination of both. This pedy
of the force field is controlled by means of the projectionrapar

(Pip)(K) = ZP5(K) + (1 - P (K) = 267j + (1 - 24)%

For solenoidal modeg,= 1 (k-a = 0), whereag = 0 (kxa = 0) for
dilatational modes. We sét= 0.1. Thus, compression dominates
over rotation in our simulations.

e The autocorrelation time scale determines the evolution of the
force field. The memory of earlier flow configurations is damhpe
exponentially over the timé&. We identify T with the large-eddy
turn-over time of the turbulent flow, 1. €I, = V/L.

e The magnitudd-g of the forcing modes is chosen such tligjs =
V3V/T. SettingV = 5cp/ V3, the characteristic initial Mach num-
ber in our simulations equals(

Mass Density and Mach Number

e Global averages characterise the overall evolution of {rstem.
Below, the root mean squares (RMS) of the normalised velo¢\
and the Mach number Ma v/cs are plotted as functions of time for
y = 1.4. Initially, there is a steep rise due to the formation ofckso
The RMS velocity quickly adjusts to a statistically stahoy state.
The RMS Mach number, on the other hand, gradually decreasgs,
because the heat produced by the dissipation of kinetiggmeres
the speed of sound in camprison to the flow velocity.
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Ficure 1: Evolution of the root mean square (RMS) velocity Iin
units ofV and the RMS Mach number, respectively, ot 1.4
(adiabatic equation of state).

e Probability density functions show the variability of quiies at
a certain instant of time. The integrated probability deesiare
called the probability distribution functions (PDF). Tldsinctions
are plotted for the mass density and the Mach number after oge
large-eddy turn-over has elapsdd= 1.0T). Since the flow Is In
the transonic regime, there is a significant variation ointfass den-
sity which is approximated bylag-normaldistribution. In the case
of the Mach number, one can see a power-law tail of the praibabi
density towards the subsonic range (Mal).
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Ficure 2. Probabillity density and distribution functions for the
mass density and Mach number, respectively, both in linear a
logarithmic scaling at timé = 1.0T.

Vorticity

e The curl of the velocity fieldw = Vxuv, Is calledvorticity. High vor-
ticity Is commonly considered as the hallmark of turbuleniésob-
ability density functions ofw| for consecutive instants of time are
shown below. The distribution of the vorticity modulus apeto
be a robust feature once the flow has reached statisticdilqum
Irrespective of the gradually decreasing RMS Mach number.
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Ficure 3. Probability density functions of the vorticity at dif-
ferent stages of the flow evolution.

¢ \We also prepared three-dimensional visualisations o$igfaces of
lw|. In the early phase of flow evolution, sheet-like structlasso-
ciated with shocks are forming. Subsequently, these sleesk
up into smaller structures which eventually resemble théexdil-
aments occurring in developed turbulence.
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Ficure 4. Visualisation of vorticity isosurfaces.

The FEARLESS Concept

e The loci of intense turbulence are found Iin intermittentctures
such as vortex filaments or sheets aligned with shocks. ordh-
son, Kritsuk et al. [2006] proposed adaptive mesh refineragan
adequate numerical tool to trace these structures in thesead a
simulation.

¢ Finding criteria that should be employed for refinement voifi-
mal computational ficiency is a crucial problem. Intuitively, one
would suspect that the numerical resolution should inerease-
gions subject to large strain.

e As an alternative approach, one might monitor regions irctvior-
ticity Is growing or compression increases. For example,time
evolution of the vorticity modulus in an inviscid isotherhggs is
given by

(%+U-V):%(a)-8-w—dw2),

whereS is the symmetric part 0¥ @ v andd = V -v. The right-hand

side of the above equation corresponds to the rate of voitetcks-

Ing Z. \orticity is growing forZ > 0. The probability density

functions ofZ show a sharp peak at zero with a slight bias towardgs

postive values.
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Ficure 5. Probability density functions for the rate of vortex
stretching.

e Based on these ideas, our goal is to implement FEARLERS(
mEchanics with Adaptively Refined Large-Eddy Simuladiam&e
Enzo code. This will also include a subgrid-scale model ¢attr
unresolved turbulent velocity fluctuations.
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