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We present three-dimensional numerical simulations of supersonic isotropic turbulence in a periodic box subject to stochastic forcing. The finite-volume code Enzo
from UCSD is utilised with the piece-wise-parabolic method[Colella and Woodward, 1984] to solve the compressible Euler equations. To begin with, a static grid of
7683 cells is used in combination with a Ornstein-Uhlenbeck-type driving force [Schmidt et al., 2006] that comprises predominantly compressive modes. The ideal
gas equation is applied withγ = 1.4 (adiabatic) in one simulation andγ = 1.01 (nearly isothermal) in a second simulation. Analysing structural properties of the flow
realizations, we intend to formulate appropriate criteriafor the efficient application of adaptive mesh refinement (AMR) in astrophysical turbulence simulations.

Stochastic Forcing

• In the simulations, fluid is stirred by a random force field that
smoothly varies in space and time.

• The discrete Fourier modes of the accelerationâ jlm(t) are deter-
mined by a Langevin-type stochastic differential equation (SDE):

dâ jlm(t) = −â jlm(t)
dt
T
+ F0













2σ2(k)
T













1/2

Pζ(k jlm) · dWt.

The second term generates Gaussian random deviates (Wt is called
the Wiener process). In one-dimensional form the above SDE de-
scribes theOrnstein-Uhlenbeck process.

• The spectrum of the force field is determined byσ(k). We apply
forcing on the largest length scales only. The corresponding charac-
teristic wavenumberk0 = 2πα/X, whereX is the size of the physical
domain. There are non-zero modes for|k| ∈ [0,2k0]. In the simu-
lations presented here,α = 2 (i. e., the forcing wavelength is about
half of the domain size).

• The forcing is either solenoidal (divergence-free) or dilatational
(rotation-free) or a weighted combination of both. This property
of the force field is controlled by means of the projection operator

(Pi j )ζ(k) = ζP⊥i j (k) + (1− ζ)P‖i j (k) = ζδi j + (1− 2ζ)
kik j

k2
.

For solenoidal modes,ζ = 1 (k· â = 0), whereasζ = 0 (k× â = 0) for
dilatational modes. We setζ = 0.1. Thus, compression dominates
over rotation in our simulations.

• The autocorrelation time scaleT determines the evolution of the
force field. The memory of earlier flow configurations is damped
exponentially over the timeT. We identify T with the large-eddy
turn-over time of the turbulent flow, i. e.,T = V/L.

• The magnitudeF0 of the forcing modes is chosen such thatfrms =√
3V/T. SettingV = 5c0/

√
3, the characteristic initial Mach num-

ber in our simulations equals 5.0.

Mass Density and Mach Number

•Global averages characterise the overall evolution of the system.
Below, the root mean squares (RMS) of the normalised velocity v/V
and the Mach number Ma= v/cs are plotted as functions of time for
γ = 1.4. Initially, there is a steep rise due to the formation of shocks.
The RMS velocity quickly adjusts to a statistically stationary state.
The RMS Mach number, on the other hand, gradually decreases,
because the heat produced by the dissipation of kinetic energy rises
the speed of sound in camprison to the flow velocity.
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F 1: Evolution of the root mean square (RMS) velocity in
units ofV and the RMS Mach number, respectively, forγ = 1.4
(adiabatic equation of state).

• Probability density functions show the variability of quantities at
a certain instant of time. The integrated probability densities are
called the probability distribution functions (PDF). These functions
are plotted for the mass density and the Mach number after one
large-eddy turn-over has elapsed (t = 1.0T). Since the flow is in
the transonic regime, there is a significant variation of themass den-
sity which is approximated by alog-normaldistribution. In the case
of the Mach number, one can see a power-law tail of the probability
density towards the subsonic range (Ma≪ 1).

F 2: Probability density and distribution functions for the
mass density and Mach number, respectively, both in linear and
logarithmic scaling at timet = 1.0T.

Vorticity

• The curl of the velocity field,ω = ∇×u, is calledvorticity. High vor-
ticity is commonly considered as the hallmark of turbulence. Prob-
ability density functions of|ω| for consecutive instants of time are
shown below. The distribution of the vorticity modulus appears to
be a robust feature once the flow has reached statistical equilibrium
irrespective of the gradually decreasing RMS Mach number.

F 3: Probability density functions of the vorticity at dif-
ferent stages of the flow evolution.

•We also prepared three-dimensional visualisations of iso-surfaces of
|ω|. In the early phase of flow evolution, sheet-like structuresasso-
ciated with shocks are forming. Subsequently, these sheetsbreak
up into smaller structures which eventually resemble the vortex fil-
aments occurring in developed turbulence.

F 4: Visualisation of vorticity isosurfaces.

The FEARLESS Concept

• The loci of intense turbulence are found in intermittent structures
such as vortex filaments or sheets aligned with shocks. For this rea-
son, Kritsuk et al. [2006] proposed adaptive mesh refinementas an
adequate numerical tool to trace these structures in the course of a
simulation.

• Finding criteria that should be employed for refinement withopti-
mal computational efficiency is a crucial problem. Intuitively, one
would suspect that the numerical resolution should increase in re-
gions subject to large strain.

• As an alternative approach, one might monitor regions in which vor-
ticity is growing or compression increases. For example, the time
evolution of the vorticity modulus in an inviscid isothermal gas is
given by
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,

whereS is the symmetric part of∇⊗ u andd = ∇ · u. The right-hand
side of the above equation corresponds to the rate of vortex stretch-
ing Ξ. Vorticity is growing for Ξ > 0. The probability density
functions ofΞ show a sharp peak at zero with a slight bias towards
postive values.

F 5: Probability density functions for the rate of vortex
stretching.

• Based on these ideas, our goal is to implement FEARLESS (Fluid
mEchanics with Adaptively Refined Large-Eddy SimulationS) in the
Enzo code. This will also include a subgrid-scale model to treat
unresolved turbulent velocity fluctuations.
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